
FAST AND EFFICIENT DISTRIBUTED MATRIX-VECTOR MULTIPLICATION
USING RATELESS FOUNTAIN CODES

Ankur Mallick

Carnegie Mellon Univ. (CMU)
amallic1@andrew.cmu.edu

Malhar Chaudhari∗

Oracle Corporation
malharchaudhari@gmail.com

Gauri Joshi

Carnegie Mellon Univ. (CMU)
gaurij@andrew.cmu.edu

ABSTRACT

We propose a rateless fountain coding strategy to alleviate
the problem of straggling nodes – computing nodes that un-
predictably slowdown or fail – in distributed matrix-vector
multiplication. Our algorithm generates linear combinations
of the m rows of the matrix, and assigns them to different
worker nodes, which then perform row-vector products with
the encoded rows. The original matrix-vector product can be
decoded as soon as slightly more than m row-vector products
are collectively completed by the nodes. This strategy enables
fast nodes to steal work from slow nodes, without requiring
the knowledge of node speeds. Compared to recently proposed
fixed-rate erasure coding strategies which ignore partial work
done by straggling nodes, rateless codes have a significantly
lower overall delay, and a smaller computational overhead.

Index Terms— Distributed Computing, Straggler Mitiga-
tion, Erasure Codes

1. INTRODUCTION

Matrix-vector multiplications form the core of a plethora of
scientific computing and machine learning applications that
include solving partial differential equations [1], forward and
back propagation in neural networks [2], computing the PageR-
ank of graphs [3] etc. In this age of Big Data, most of these
applications involve multiplying extremely large matrices and
vectors and the computations cannot be performed efficiently
on a single machine and are instead distributed across multiple
computation nodes. Individual nodes (the workers) perform
their respective tasks in parallel while a central node (the
master) aggregates the output of all the workers to complete
the computation. Unfortunately, such approaches are often
bottlenecked by a few slow or unresponsive workers, called
stragglers [4], that delay the entire computation as the master
needs to wait for all workers to complete their assigned tasks.

In the past, the problem of stragglers has been addressed
by replicating tasks at individual workers [5, 6, 7], and waiting
for any one copy to finish. The observation that replication is
a special case of the more general erasure coding framework

∗Malhar Chaudhari performed the work while at CMU

wherein stragglers can be modeled as erasures has led to the
employment of Maximum Distance Separable (MDS) codes
[8, 9, 10, 11] to speed up the computation of matrix vector
products in a distributed setting. In this framework codes are
employed to add redundancy so that only a subset of nodes are
required to complete the tasks assigned to them.

In this work we use rateless fountain codes [12, 13] for
distributed multiplication of a m× n matrix A with a n× 1
vector x. The rateless coded matrix-vector multiplication
algorithm generates coded linear combinations of the m rows
of matrix A and distributes them across p worker nodes. Each
node also receives a copy of x. The master node needs to wait
for any md = m(1 + ε) row-vector products to be completed
across all the nodes, where ε is a small overhead (ε → 0 as
m→∞). Using rateless codes has the following key benefits.

Low Latency via Seamless Load-Balancing. A key
drawback of replication or fixed-rate coding strategies is that
they rely on using the results of a fast subset of worker nodes,
and completely ignore partial computations performed by slow
or straggling nodes. On the other hand our rateless coding
strategy achieves near ideal load balancing by utilizing the
computations performed by all nodes while ensuring that
faster nodes complete more tasks than slower nodes. This also
provides robustness to node failures since available nodes can
make up for computations lost due to failed nodes.

Negligible Redundant Computation. Rateless Coding
performs md = m(1+ ε) row-vector product computations on
average, where, the overhead ε goes to zero as the number of
matrix rows m increases. In the case of MDS coding or repli-
cation, if there is no straggling, the worker nodes collectively
perform a large amount of redundant computation.

Low Decoding Complexity. Another benefit of using rate-
less codes is the extremely fast decoding of O(m lnm) which
allows our approach to scale efficiently even for very large m.

While the use of LT codes for matrix-vector multiplication
has been recently proposed in [14, 15], these works do not
utilize partial work done by stragglers, which is the key novel
contribution of our work. Due to this our approach achieves
the aforementioned benefits of near optimal straggler toler-
ance, negligible overhead of redundant computation, as well
as robustness to node failures.

a1	 a2	 a3	

Original Rows

Encoded rows

a1+a2 a1 a2+a3 a1+a3

(a) Encoding Graph

? ? ?

b1+b2 b1 b2+b3 b1+b3

b1 ? ?

b2 b1 b2+b3 b3

Decode degree 1
encoded symbols

Subtract decoded symbols
from encoded products

(b) Decoding Graph

Fig. 1: (a) Bipartite graph representation of the encoding of the rows a1,a2, . . .am of matrix A. Each encoded row is the sum of d rows of A
chosen uniformly at random, where d is drawn from the Robust Soliton degree distribution [12]. (b) In each step of the iterative decoding
process, a single degree one encoded symbol is decoded directly, and is subtracted from all sums in which it participates.

2. PROBLEM FORMULATION

Consider the problem of multiplying a m× n matrix A with
a n × 1 vector x using p worker nodes and a master node.
The worker nodes can only communicate with the master,
and cannot directly communicate with other workers. The
goal is to compute the result b = Ax in a distributed fash-
ion and mitigate the effect of unpredictable node slowdown
or straggling. The rows of matrix A are encoded using an
erasure code to give the me × n encoded matrix Ae, where
me = αm ≥ m. Matrix Ae is split along its rows to give p
submatrices Ae,1, . . . ,Ae,p of equal size such that worker i
stores submatrix Ae,i. To compute the matrix-vector product
b = Ax, the vector x is communicated to the workers such
that Worker i is tasked with computing the product Ae,ix.

To complete the assigned task, each worker needs to com-
pute a sequence of row vector products of the form ae,jx
where ae,j is the jth row of Ae. The time taken by a worker
node to finish computing one or more row-vector products may
be random due to variability in the node speed or the amount
of computation assigned to it. The master node aggregates the
computations of all, or a subset of, the workers into the vector
be, which is then decoded to give the final result b = Ax. If
be is not decodable, the master waits until more row-vector
products are completed by the workers.

2.1. Performance Criteria

We use the following metrics to compare different distributed
matrix-vector multiplication schemes via theoretical analysis
and associated simulations (Section 4).

Definition 1 (Latency (T)). The latency T is the time required
by the system to complete enough number of computations so
that b = Ax can be successfully decoded from the worker
computations aggregated in be.

Definition 2 (Computations (C)). The number of computa-
tions C is defined as the total number of row-vector products
ae,jx performed collectively by worker nodes until the vector
b = Ax is decoded.

For any strategy, we have C ≥ m where m is the number
of rows of A or the number of elements in b.

2.2. Benchmarks for Comparison

We compare the performance of the proposed rateless coded
strategy with two benchmarks: the replication, and the MDS-
coded strategies.

The r−Replication Strategy. In this approach A is split
along its rows into p/r submatrices A1, . . . ,Ap/r, with rm/p
rows each (assume that p/r divides m). Each submatrix is
multiplied with x in parallel on r distinct worker nodes. The
master collects the results from only the fastest of the r nodes
that have been assigned the task of computing the product
Aix, for all i and discards the rest. The computed products are
aggregated into the m×1 vector b. Setting r = 1 corresponds
to the naive or uncoded strategy where each submatrix-vector
product is computed at a single worker node. Increasing the
number of replicas provides greater straggler tolerance at the
cost of more redundant computations. Systems like Mapreduce
[16] and Spark [17] often use r = 2 i.e. each computation is
assigned to 2 different worker nodes for added reliability and
straggler tolerance.

The (p, k) MDS-Coded Strategy. The MDS-Coded
appraoch for straggler mitigation [11, 18] involves pre-
multiplying A at the master with a suitable encoding matrix F
denoting the MDS code. Encoding A using a (p, k) MDS code
involves splitting it along its rows into k matrices A1, . . . ,Ak,
each having m/k rows. The MDS code adds p− k redundant
matrices Ak+1, . . . ,Ap which are independent linear combi-
nations of the matrices A1, . . . ,Ak. Worker i computes the
product of matrix Ai with vector x. The master can recover
the product b = Ax if any k workers complete their task.
Thus the system is robust to p − k stragglers. However this
strategy adds a significant computation overhead. When none
of the nodes are slow, the system performs mp/k row-vector
products, whereas in the uncoded case it only performs m
row-vector products.

3. PROPOSED RATELESS CODING STRATEGY

We now propose our rateless coding strategy which uses LT
codes [12] to mitigate the effect of stragglers in computing the
matrix-vector product b = Ax in the master-worker frame-
work described in Section 2.

Luby Transform (LT) codes proposed in [12] are a class of
erasure codes that can be used to generate a limitless number
of encoded symbols from a finite set of source symbols. We
apply LT codes to matrix-vector multiplication by treating the
m rows of the matrix A as source symbols. Each encoded
symbol is the sum of d source symbols chosen uniformly at
random from the matrix rows. Thus if Sd ⊆ {1, 2, . . .m}
is the set of d row indices, the corresponding encoded row
is ae =

∑
i∈Sd ai. The number of original rows in each

encoded row, or the degree d, is chosen according to the Robust
Soliton degree distribution the details of which are described
in Appendix A and in Luby’s original work [12].

The m × n matrix A is encoded to generate an me × n
encoded matrix Ae where me = αm. Once the αm rows
of the encoded matrix Ae are generated, they are distributed
equally among the p worker nodes. To multiply A with a
vector x, the master sends x to the workers. Each worker
multiplies x with each row of Ae stored in its memory and
returns the product (a scalar) to the master. The master collects
row-vector products of the form ae,jx (elements of be) from
workers until it has enough elements to be able to recover b.

To decode the desired matrix vector product b = Ax
from a subset of M ′ symbols of be we use the the iterative
peeling decoder described in [12, 13]. If b = [b1, b2, . . . bm],
the decoder may receive symbols b1 + b2 + b3, b2 + b4, b3, b4,
and so on. Decoding is performed in an iterative fashion. In
each iteration, the decoder finds a degree one encoded symbol,
covers the corresponding source symbol, and subtracts the
symbol from all other encoded symbols connected to that
source symbols (see Figure 1b). Once the master receives
M ′ elements of be (M ′ is the number of symbols required
for successful decoding), it sends a done signal to all workers
nodes to stop their local computation.

Since the encoding uses a random bipartite graph, the
number of symbols required to decode the m source symbols
successfully is a random variable M ′. For the Robust Soliton
distribution, [12] gives a high probability bound on M ′.

Lemma 1 (Theorems 12 and 17 in [12]). The original set of
m source symbols can be recovered from a set of any M ′ =
m+O(

√
m ln2(m/δ)) with probability at least 1− δ.

In our analysis we denote md = E[M ′]. Using the theoret-
ical guarantees for LT codes (see Appendix A) we can show
that md = m(1 + ε), where ε → 0 as m → ∞. In practice
one can choose a small enough value of δ and compute the
corresponding value of M ′ such that decoding is susccessful
with a high probability.

X1Worker 1

Xp

Worker 2

Worker p

X2

TLT0

Cp𝜏

C1𝜏
Time

Fig. 2: Worker i has a random exponential initial delay Xi, after
which it completes row-vector product tasks (denoted by the small
rectangles), taking time τ per task. The latency TLT is the time to
complete M ′ tasks in total.

4. THEORETICAL ANALYSIS

Our main theoretical results involve comparing the proposed
rateless coding strategy with the MDS and replication coding
strategies in terms of latency and computations. The proofs
of the theoretical results presented here are contained in Ap-
pendix B. We assume that worker i performs Bi computations
in time Yi where

Yi = Xi + τBi, for all i = 1, . . . , p (1)

where Xi is a random variable that includes the network la-
tency, initial setup time, and other random components, and
τ is a constant shift which is the time taken by any worker
to perform a single computation (row-vector multiplication).
When Xi is exponentially distributed with rate µ, the time
taken by worker i to perform b computations is distributed
as Pr(Yi ≤ t) = 1 − exp(−µ(t − τb). While this follows
the shifted exponential delay model used in [?, 9], the key
difference is that the shift is parameterized by the number of
computations at each worker. We believe this is a more real-
istic model as it captures the effect of increasing the amount
of computations on the delay – if a worker is assigned more
computations, there is larger delay. Figure 2 illustrates the
latency of the LT coded strategy, TLT under this delay model.

Theorem 1 (Latency of the Rateless Coded Strategy). For
large me i.e. α = me/m → ∞, the expected latency for
the LT-coded case with p workers and Xi ∼ exp(µ) for all
workers i = 1, . . . , p, is bounded as.

E[TLT] ≤
τmd

p
+

1

µ
+ τ, (2)

E[TLT] ≥
τmd

p
+

1

pµ
, (3)

where md = m(1 + ε) is the expected number of symbols
necessary for successful decoding.

Remark 1. While we need α → ∞ for the above results
to strictly hold, we observe empirically (Figure 3a) that LT
codes exhibit superior latency performance over the bench-
mark strategies even for α = 2.0.

10 20 30 40
t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded

Rep (r = 2)

MDS (k = 5)

LT (α = 2.0)

(a) Latency Tail

10000 12000 14000 16000 18000 20000
c

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
C
>
c)

Uncoded

Rep (r = 2)

MDS (k = 5)

LT (α = 2.0)

(b) Computation Tail

10 12 14 16 18 20
E[T]

1.0

1.2

1.4

1.6

E
[C

]/
m

Uncoded

r=2

(r=1/k=10)

k=9
k=8

k=7

k=6

k=5

α=1.25

α=1.5

α=2.0

Rep

MDS

LT

(c) Avg. Computations v/s latency

Fig. 3: The tail probability of the latency is the highest for the replication schemes. MDS codes perform better in terms of latency but they
perform a large number of redundant computations. The latency tail of LT codes is the minimum among all the schemes. Moreover the LT coded
scheme performs significantly fewer redundant computations than MDS Codes or replication. All results were obtained from 500 Monte-Carlo
Simulations with number of matrix rows, m = 10000, number of worker nodes p = 10 and delay model parameters µ = 0.2, τ = 0.005.

Theorem 2 (Latency of Replication and MDS Coding). The
expected latency for the r−Replication and the (p, k) MDS-
coded strategies with Xi ∼ exp(µ) for all workers i =
1, . . . , p is

E[Trep] =
τmr

p
+

1

µ
Hp/r '

τmr

p
+

1

µ
log

p

r
(4)

E[TMDS] =
τm

k
+

1

µ
(Hp −Hp−k) '

τm

k
+

1

µ
log

p

p− k
,

(5)

where Hj =
∑j
v=1 1/v, the jth Harmonic number.

Remark 2. Observe that in (4) and (5) above, adding redun-
dancy (increasing r and reducing k respectively) leads to an
increase in the first term (more computation at each node)
and decrease in the second term (less delay due to stragglers).
Thus, straggler mitigation comes at the cost of additional com-
putation at the workers which might even lead to an increase
in latency. This is seen in Figure 3c where the latency actually
increases on adding redundancy for the MDS-coded case.

Remark 3. One of the main advantages of the rateless coded
strategy is that the number of computations performed by
all the workers asymptotically (as m → ∞) approaches the
minimum number of computations (m) required to recover
a m−dimensional matrix-vector product (lemma 1). On the
other hand, the following theorems show that the total com-
putations performed by all workers (fast and slow) in the
replication and MDS-coded schemes is much larger than m.

Theorem 3 (Tail of Computations for MDS Coding). The tail
of the number of computations of the MDS coded strategy,
CMDS, with p workers and Xi ∼ exp(µ) is bounded as

Pr(CMDS ≥
mp

k
− C0) ≥ 1− exp (−µθMDS) (6)

θMDS =
τC0

(p− k)2
− τ

p− k
(7)

Theorem 4 (Tail of Computations for Replication). The tail
of the number of computations of the replication strategy, Crep,
with p workers and Xi ∼ exp(µ) is bounded as

Pr(Crep ≥ mr − C0) ≥ 1−
p/r−1∑
i=0

1

i!
exp(−µθRep)(µθRep)

i

(8)

θrep =
τC0

(r − 1)2
− τp

r(r − 1)
(9)

Remark 4. While the benefits of using partial work from all
workers can be obtained by using any random linear code
on the rows of A, the key strength of LT codes is their low
decoding complexity of O(m lnm). Using an (me,m) MDS
code over the rows of A then the decoding complexity would
be O(m3) which is unacceptable for large m.

5. CONCLUDING REMARKS

Due to the massive size of matrices arising in modern data-
driven applications, computations such as matrix-vector mul-
tiplication need to be parallelized across multiple nodes. In
this paper we propose an erasure coding strategy based on
rateless fountain codes to overcome bottlenecks caused by
slow or straggling nodes. For a matrix with m rows, our
strategy requires the nodes to collectively finish slightly more
than m row-vector products, and thus can seamlessly adapt to
varying node speeds and achieve near-perfect load balancing.
Moreover, it has a small overhead of redundant computations
(asymptotically zero), and low decoding complexity. Thus, it
strikes a better latency-computation trade-off than the uncoded
and fixed-rate erasure coding strategies. The ideas of this paper
can potentially be extended to any random linear network code
including other rateless codes such as Raptor Codes [19] and
other low-complexity random linear codes [20].

6. REFERENCES

[1] William F Ames, Numerical Methods for Partial Differ-
ential Equations, Academic Press, 2014.

[2] William Dally, “High-performance hardware for ma-
chine learning,” NIPS Tutorial, 2015.

[3] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd, “The pagerank citation ranking: Bringing
order to the web.,” Tech. Rep., Stanford InfoLab, 1999.

[4] Jeffrey Dean and Luiz André Barroso, “The tail at scale,”
Communications of the ACM, vol. 56, no. 2, pp. 74–80,
2013.

[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris, “Reining in the outliers in map-reduce clusters
using mantri.,” in USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2010, vol. 10,
p. 24.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica, “Effective straggler mitigation: Attack of
the clones.,” in USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2013, vol. 13,
pp. 185–198.

[7] Da Wang, Gauri Joshi, and Gregory Wornell, “Using
straggler replication to reduce latency in large-scale par-
allel computing,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 43, no. 3, pp. 7–11, 2015.

[8] Gauri Joshi, Yanpei Liu, and Emina Soljanin, “On the
delay-storage trade-off in content download from coded
distributed storage systems,” IEEE Journal on Selected
Areas of Communications, vol. 32, no. 5, pp. 989–997,
May 2014.

[9] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover,
“Short-dot: Computing large linear transforms distribut-
edly using coded short dot products,” in Advances In
Neural Information Processing Systems, 2016, pp. 2100–
2108.

[10] Gauri Joshi, Emina Soljanin, and Gregory Wornell, “Ef-
ficient redundancy techniques for latency reduction in
cloud systems,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 2,
no. 12, may 2017.

[11] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani,
Dimitris Papailiopoulos, and Kannan Ramchandran,
“Speeding up distributed machine learning using codes,”
IEEE Transactions on Information Theory, 2017.

[12] Michael Luby, “LT Codes,” in Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Sym-
posium on. IEEE, 2002, pp. 271–280.

[13] Amin Shokrollahi, “Raptor codes,” IEEE transactions
on information theory, vol. 52, no. 6, pp. 2551–2567,
2006.

[14] Albin Severinson, Alexandre Graell i Amat, and Eirik
Rosnes, “Block-diagonal and lt codes for distributed
computing with straggling servers,” arXiv preprint
arXiv:1712.08230, dec 2017.

[15] Sinong Wang, Jiashang Liu, and Ness Shroff,
“Coded sparse matrix multiplication,” arXiv preprint
arXiv:1802.03430, 2018.

[16] Jeffrey Dean and Sanjay Ghemawat, “Mapreduce: sim-
plified data processing on large clusters,” Communica-
tions of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[17] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin,
Scott Shenker, and Ion Stoica, “Spark: Cluster comput-
ing with working sets.,” HotCloud, vol. 10, no. 10-10,
pp. 95, 2010.

[18] Songze Li, Mohammad Ali Maddah-Ali, and A Salman
Avestimehr, “A unified coding framework for distributed
computing with straggling servers,” in IEEE Global
Communications Conference (GLOBECOM) Workshops.
IEEE, 2016, pp. 1–6.

[19] Amin Shokrollahi, Michael Luby, et al., “Raptor codes,”
Foundations and trends in communications and informa-
tion theory, vol. 6, no. 3–4, pp. 213–322, 2011.

[20] Gauri Joshi and Emina Soljanin, “Round-robin overlap-
ping generations coding for fast content download,” in
IEEE International Symposium on Information Theory
(ISIT), July 2013, pp. 2740–2744.

[21] David JC MacKay, Information theory, Inference and
Learning Algorithms, Cambridge university press, 2003.

[22] H. A. David and H. N. Nagaraja, Order statistics, John
Wiley, Hoboken, N.J., 2003.

A. PROPERTIES OF LT CODES

The number of original rows in each encoded row, or the degree d, is chosen according to the Robust Soliton degree distribution
wherein the probability of choosing d = i is proportional to

ρ(d) =


R
dm + 1

m for d = 1
R
dm + 1

m(m−1) for d = 2, . . . ,m/R− 1
R ln(R/δ)

m + 1
m(m−1) for d = m/R

1
m(m−1) for d = m/R+ 1, . . . ,m

(10)

where R = c log(m/δ)
√
m for some c > 0 and δ ∈ [0, 1], with c and δ being design parameters. Some guidelines for

choosing c and δ can be found in [21]. The probability of choosing d = d0 is equal to ρ(d0)/
∑m
i=1 ρ(i). Once the degree d is

chosen, encoding is performed by choosing d source symbols uniformly at random (this determines Sd) and adding them to
generate an encoded symbol. The encoding process is illustrated in Figure 1a.

Figure 4, shows simulation results for the number of symbols decoded successfully for each encoded symbol received. For
this we perform LT-Coded multiplication of a randomly generated 10, 000 × 10, 000 matrix with a 10, 000 × 1 vector. The
matrix A is encoded using an LT code with parameters c and δ chosen according to the guidelines of [21]. We generate a single
row of the encoded matrix Ae at a time which is then multiplied with the 10, 000× 1 size vector x to give a single element of
the encoded matrix vector product be. The process is repeated until we have enough symbols for successfully decoding the
entire 10, 000× 1 size vector b using the peeling decoder. The plots of Figure 4 correspond to different choices of c and δ. In
each case we observe an avalanche behavior wherein very few symbols are decoded up to a point (approximately upto 10, 000
encoded symbols received) after which the decoding proceeds very rapidly to completion. This effectively illustrates the fact that
the computation overhead of the proposed LT coded matrix vector multiplication strategy is very small (md = m(1 + ε)).

The theoretical encoding and decoding properties of LT codes are summarized in the following lemmas:

Lemma 2 (Theorem 13 in [12]). For any constant δ > 0, the average degree of an encoded symbol is O(log(m/δ)) where m is
the number of source symbols.

Corollary 1. Each encoding symbol can be generated using O(logm) symbol operations on average.

Lemma 3 (Theorem 17 in [12]). For any constant δ > 0 and for a source block with m source symbols, the LT decoder can
recover all the source symbols from a set of m′ = m+O(

√
m log2(m/δ)) with probability at least 1− δ.

Corollary 2. The decoding threshold md as defined in Definition 3 is given by md = m(1 + ε) where ε→ 0 as m→∞

Corollary 3. Since the average degree of an encoded symbol is O(log(m/δ)) the decoding requires O(m logm) symbol
operations on average.

0 2000 4000 6000 8000 10000
Number of encoded symbols received

0

2000

4000

6000

8000

10000

N
u

m
b

er
of

so
u

rc
e

sy
m

b
ol

s
re

co
ve

re
d

c = 0.03, δ = 0.5

c = 0.01, δ = 0.5

c = 0.03, δ = 0.1

Fig. 4: The number of decoded symbols is almost constant until m = 10, 000 encoded symbols are received after which it increases rapidly.

X1Worker 1

Xp

Worker 2

Worker p

X2

TLT0

Cp𝜏

C1𝜏
Time

Fig. 5: Worker i has a random exponential initial delay Xi, after which it completes row-vector product tasks (denoted by the small rectangles),
taking time τ per task. The latency TLT is the time to complete md tasks in total.

B. PROOF OF THEORETICAL RESULTS

B.1. Delay Model and Order Statistics Primer

We first state some standard results [22] on order statistics of exponential random variables to aid the understanding of the latency
analysis presented subsequently. If X1, X2, . . .Xp are exponential random variables with rate µ, their kth order statistic is
denoted by Xk:p. Thus, X1:p = min(X1, X2, . . . Xp), and Xp:p = max(X1, X2, . . . Xp). The expected value of Xk:p is given
by

E[Xk:p] =
1

µ

(
1

p
+ · · ·+ 1

p− k + 1

)
(11)

=
Hp −Hp−k

µ
, (12)

where Hp is the pth Harmonic number

Hp ,

{∑p
i=1

1
i for p = 1, 2, . . .

0 for p = 0
(13)

For large p,Hp = log p+ γ, where γ is the Euler-Mascheroni constant and thus we can use the approximation Hp ' log p for
large p.

Also the difference of consecutive order statistics of i.i.d exponential random variables is also exponentially distributed as,

(Xl+1:p −Xl:p)
d
= Up−l (14)

where Up−l ∼ exp((p− l)µ).

B.2. Proof of Theorem 1

As per our model, the time taken by worker i to perform Bi computations is given by

Yi = Xi + τBi, for i = 1, . . . , p. (15)

The latency TLT is the earliest time when
∑p
i=1Bi = md, as illustrated in Figure 2. We note that, in this case it is not necessary

that each worker has completed at least 1 computation. Specifically, if TLT −Xi ≤ τ for any i then it means that worker i has
not performed even a single computation in the time that the system as a whole has completed md computations (owing to the
large initial delay Xi). Therefore we define

WLT := {i : TLT −Xi ≥ τ} (16)

HereWLT is the set of workers for which Bi > 0. Thus

TLT = max
i∈WLT

Yi, (17)

= max
i∈WLT

(Xi + τBi) , (18)

≥ min
i∈{1,...p}

Xi + τ max
i∈WLT

Bi, (19)

≥ min
i∈{1,...p}

Xi + τ
m′

p
, (20)

where to obtain (19), we replace each Xi in (18) by mini∈[1,...p]Xi and then we can bring it outside the maximum. To obtain
(20), we observe that in order for the p workers to collectively finish m′ computations, the maximum number of computations
completed by a worker has to be at least m/p. Taking expectation on both sides we get

E[TLT] ≥ E[min (X1, X2, . . . Xp)] +
τm′

p
, (21)

=
1

pµ
+
τm′

p
. (22)

where the lower bound in (22) follows from the result (12) on order statistics of exponential random variables. To derive the
upper bound, we note that

TLT ≤ Xi + τ(Bi + 1), for all i = 1, . . . , p (23)

This is because at time TLT each of the workers 1, . . . , p, have completed B1, . . . , Bp row-vector product tasks respectively, but
they may have partially completed the next task. The 1 added to each Bi accounts for this edge effect, which is also illustrated in
Figure 2. Summing over all i on both sides, we get

p∑
i=1

TLT ≤
p∑
i=1

Xi +

p∑
i=1

τ (Bi + 1) (24)

pTLT ≤
p∑
i=1

Xi + τ (md + p) (25)

Taking expectation on both sides and rearranging we obtain the upper bound,

pE[TLT] ≤
p

µ
+ τ (md + p) , (26)

E[TLT] ≤
τmd

p
+

1

µ
+ τ. (27)

B.3. Proof of Theorem 2

In the r−replication strategy each submatrix Ai is replicated at r workers and we wait for the fastest of these r workers.
Without loss of generality, we assume that submatrix A1 is stored at workers 1, 2, . . . , r, submatrix A2 is stored at workers
r + 1, r + 2, . . . , 2 ∗ r and so on. More generally submatrix Ai is stored at workers (i− 1)r + 1, . . . , ir. Thus the time taken to
compute the product Aix is given by

Zi = min
(
Y(i−1)r+1, Y(i−1)r+2, . . . , Yir

)
(28)

= min
(
X(i−1)r+1 + τB(i−1)r+1, . . . , Xir + τBir

)
(29)

= min
(
X(i−1)r+1, . . . , Xir

)
+
τmr

p
(30)

=Wi +
τmr

p
(31)

where Wi = min(X(i−1)r+1, . . . , Xir) is an exp(rµ) random variable since it is the minimum of r exp(µ) random variables.
This is because the fastest of the r workers that store Ai is the one corresponding to min(X(i−1)r+1, . . . , Xir) and this worker
must perform mr

p computations to compute the product Aix.

The latency Trep is the time at which the product Aix is computed for all i = 1, . . . , p/r since A is split into p/r submatrices.
Thus

Trep = max
(
Z1, Z2, . . . , Zp/r

)
, (32)

= max
(
W1,W2, . . . ,Wp/r

)
+
τmr

p
, (33)

Taking expectation on both sides

E[Trep] =
τmr

p
+ E[max

(
W1,W2, . . . ,Wp/r

)
], (34)

=
τmr

p
+

1

rµ
Hp/r, (35)

' τmr

p
+

1

rµ
log

p

r
, (36)

where (35) and (36) follow from (12) and (13). This proves the result for the expected latency of the replication strategy.
The latency in the MDS-coded case is TMDS = Yk:p, where Yk:p is the kth order statistic of the individual worker latencies

Y1, Y2, . . . , Yp since we only wait for the fastest k workers to finish the task assigned to them. In this case, each of the fastest k
workers performs m

k computations and thus the expected overall latency is given by

E[TMDS] = E[Xk:p] + τ
m

k
, (37)

=
τm

k
+

1

µ
(Hp −Hp−k) , (38)

' τm

k
+

1

µ
log

p

p− k
. (39)

where (38) and (39) follow from the exponential order statistics results in (12) and (13).

B.4. Proof of Theorem 3

As per our model, we represent the number of computations at worker i by the random variable Bi . We also use the random
variable CMDS to denote the total number of computations performed by all p workers until TMDS, which is the time when the
master collects enough computations to be able to recover the matrix-vector product b = Ax. Thus

CMDS = B1 +B2 + . . .+Bp (40)
= B1:p +B2:p + . . .+Bp:p, (41)

where the second expression is simply the right-hand side of the first expression written in terms of the corresponding order
statistics. We note that under our model the time spent by worker i in performing Bi computations is Yi = Xi + τBi where Xi

denotes setup/initial delay and τ is a constant denoting the time taken to perform a single computation. Thus B1:p corresponds to
the worker that performs the least number of computations which is also the worker with the largest value of setup time i.e Xp:p

since all workers stop computing at the same time (TMDS). Thus for a given C0, the tail of the total number of computations
performed in the MDS Coded strategy is given by

Pr
(
CMDS ≤

mp

k
− C0

)
= Pr

(
p∑
i=1

Bi:p ≤
mp

k
− C0

)
(42)

= Pr

(
p−k∑
i=1

Bi:p +
m

k
× k ≤ mp

k
− C0

)
(43)

= Pr

(
p−k∑
i=1

Bi:p ≤
m (p− k)

k
− C0

)
(44)

≤ Pr

(
(p− k)B1:p ≤

m (p− k)
k

− C0

)
(45)

= Pr

(
B1:p ≤

m

k
− C0

p− k

)
(46)

where (43) follows from the fact that the fastest k workers which correspond to Bp−k+1:p, Bp−k+2:p, . . . , Bp:p must perform all
the tasks assigned to them i.e. m/k computations each, while (45) follows from the fact that B2:p, . . . , Bp:p are always larger
than B1:p by definition.

At this point we note that the worker which performs B1:p computations has setup time Xp:p. There can be two possibilities –
either TMDS > Xp:p, or TMDS ≤ Xp:p. If TMDS > Xp:p then

TMDS ≤ Xp:p + τ (B1:p + 1) (47)

where the added 1 accounts for the edge effect of partial computations at the nodes. If TMDS ≤ Xp:p then also the upper bound
(47) holds. Thus overall (by rearranging terms in (47)) we obtain,

B1:p ≥
TMDS −Xp:p

τ
− 1 (48)

Thus we can write

Pr
(
CMDS ≤

mp

k
− C0

)
≤ Pr

(
TMDS −Xp:p

τ
− 1 ≤ m

k
− C0

p− k

)
(49)

= Pr

(
Xp:p −Xk:p ≥

τC0

p− k
− τ
)

(50)

= Pr

(
p−1∑
l=k

(Xl+1:p −Xl:p) ≥
τC0

p− k
− τ

)
(51)

where (50) follows from the fact that TMDS = Xk:p + τm/k.
If Xi ∼ exp(µ) we can use the result from (14) to simplify the above expression further,

Pr
(
CMDS ≤

mp

k
− C0

)
≤ Pr

(
p−k∑
i=1

Ui ≥
τC0

p− k
− τ

)
(52)

≤ Pr

(
(p− k)U1 ≥

τC0

p− k
− τ
)

(53)

= Pr

(
U1 ≥

τC0

(p− k)2
− τ

p− k

)
(54)

= exp

(
−µ

(
τC0

(p− k)2
− τ

p− k

))
(55)

where (53) is obtained from the fact that Pr(U1 ≥ u) ≥ Pr(Ul ≥ u) for l = 2, . . . , p− k for any u since Ul ∼ exp(lµ). Lastly
(55) is obtained from the expression for the tail distribution of an exponential random variable.

B.5. Proof of Theorem 4

As per our model, we represent the number of computations at worker i by the random variable Bi . We also use the random
variable Crep to denote the total number of computations performed by all p workers until Trep, which is the time when the master
collects enough computations to be able to recover the matrix-vector product b = Ax. Thus

Crep = B1 +B2 + . . .+Bp (56)

=

p/r∑
i=1

r∑
j=1

B(i−1)r+j , (57)

where the term inside the summation in the second expression represents the number of computations performed by each worker
that store a copy of the submatrix Ai (for a given i). In what follows, we use the shorthand notation Di

j = B(i−1)r+j and use
Di
j:r to denote the order statistics of Di

1, . . . , D
i
r. Rewriting the above expression in terms of the order statistics we get,

Crep =

p/r∑
i=1

r∑
j=1

Di
j:r, (58)

and the tail bound,

Pr(Crep ≤ mr − C0) = Pr

p/r∑
i=1

r∑
j=1

Di
j:r ≤ mr − C0

 (59)

= Pr

p/r∑
i=1

r−1∑
j=1

Di
j:r ≤ m(r − 1)− C0

 (60)

≤ Pr

(r − 1)

p/r∑
i=1

Di
1:r ≤ m(r − 1)− C0

 (61)

= Pr

p/r∑
i=1

Di
1:r ≤ m−

C0

r − 1

 (62)

where (60) follows from the fact that for any given submatrix Ai, i = 1, . . . , p/r, the fastest worker that stores a copy of that
submatrix, which corresponds to Di

r:r (fastest worker performs the most computations) must perform all the tasks assigned to it
i.e. mr/p computations each, while (61) follows from the fact that Di

2:r, . . . , D
i
r:r are always larger than Di

1:r by definition.
At this point we introduce the shorthand notation V ij = X(i−1)r+j for the setup time of the worker that stores the jth copy of

submatrix Ai and note that the worker which performs Di
1:r computations has setup time V ir:r (V ij:r are the order statistics of

V i1 , . . . , V
i
r). There can be two possibilities – either Trep > V ir:r, or Trep ≤ V ir:r. If Trep > V ir:r then

Trep ≤ V ir:r + τ(Di
1:r + 1) (63)

where the added 1 accounts for the edge effect of partial computations at the nodes. If Trep ≤ V ir:r then also the upper bound (63)
holds. Thus overall (by rearranging terms in (63)) we obtain,

Di
1:r ≥

Trep − V ir:r
τ

− 1 (64)

Thus we can write

Pr(Crep ≤ mr − C0) ≤ Pr

p/r∑
i=1

(
Trep − V ir:r

τ
− 1

)
≤ m− C0

r − 1

 (65)

= Pr

p/r∑
i=1

(V ir:r −Wrep) ≥
τC0

r − 1
− τp

r

 (66)

where Wrep = maxi V
i
1:r = max1≤i≤p/rmin1≤j≤rX(i−1)r+j and (66) follows from the fact that

Trep = max
1≤i≤p/r

min
1≤j≤r

X(i−1)r+j + τmr/p

From our definition of Wrep we see that,

V ir:r −Wrep ≤ V ir:r − V i1:r (67)

and the consequent stochastic dominance can be used to get an upper bound on (66) as,

Pr(Crep ≤ mr − C0) ≤ Pr

p/r∑
i=1

(V ir:r − V i1:r) ≥
τC0

r − 1
− τp

r

 (68)

= Pr

p/r∑
i=1

r−1∑
j=1

(V ij+1:r − V ij:r) ≥
τC0

r − 1
− τp

r

 (69)

If Xi ∼ exp(µ) we can use the result from (14) to simplify the above expression further (since V ij = X(i−1)r+j are also

exponentially distributed and thus (V ij+1:r − V ij:r)
d
= U ir−j , U

i
r−j ∼ exp((r − j)µ)),

Pr(Crep ≤ mr − C0) ≤ Pr

p/r∑
i=1

r−1∑
j=1

U1
r−j ≥

τC0

r − 1
− τp

r

 (70)

≤ Pr

(r − 1)

p/r∑
i=1

U i1 ≥
τC0

r − 1
− τp

r

 (71)

= Pr

p/r∑
i=1

U i1 ≥
τC0

(r − 1)2
− τp

r(r − 1)

 (72)

=

p/r−1∑
i=0

1

i!
exp(−µθ)(µθ)i. (73)

where (71) is obtained from the fact that Pr(U i1 ≥ u) ≥ Pr(U ir−j ≥ u) for j = 1, . . . , r − 2 for any u since Ur−j ∼
exp((r − j)µ). Lastly (73) is obtained from the expression for the tail distribution of an Erlang random variable which is the
sum of p/r exponential random variables with rate µ and

θ =
τC0

(r − 1)2
− τp

r(r − 1)
(74)

	 Introduction
	 Problem Formulation
	 Performance Criteria
	 Benchmarks for Comparison

	 Proposed Rateless Coding Strategy
	 Theoretical Analysis
	 Concluding Remarks
	 References
	 Properties of LT Codes
	 Proof of Theoretical Results
	 Delay Model and Order Statistics Primer
	 Proof of thm:LTlatency
	 Proof of thm:repmdslatency
	 Proof of thm:mdscomptail
	 Proof of thm:repcomptail

