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Abstract—Machine learning today involves massive distributed
computations running on cloud servers, which are highly suscep-
tible to slowdown or straggling. Recent work has demonstrated
the effectiveness of erasure codes in mitigating such slowdown
for linear computations, by adding redundant computations such
that the entire computation can be recovered as long as a subset of
nodes finish their assigned tasks. However, most machine learning
algorithms typically involve non-linear computations that cannot
be directly handled by these coded computing approaches. In
this work, we propose a coded computing strategy for mitigating
the effect of stragglers on non-linear distributed computations.
Our strategy relies on the observation that many expensive
non-linear functions can be decomposed into sums of cheap
non-linear functions. We show that erasure codes, specifically
rateless codes can be used to generate and compute random
linear combinations of these functions at the nodes such that
the original function can be computed as long as a subset of
nodes return their computations. Simulations and experiments
on AWS Lambda demonstrate the superiority of our approach
over various uncoded baselines.

A full version of this paper is accessible at [1]

I. INTRODUCTION

Due to the advent of expensive yet embarrassingly parallel
machine learning models, and the availability of cheap comput-
ing resources, most large scale machine learning models are
now implemented in distributed fashion across multiple nodes
on the cloud [2]. This typically involves writing an expensive
function as a sum of multiple cheap functions which can then
be parallelized in a MapReduce [3] fashion wherein each of the
cheap functions is computed by a distinct node (worker), while
a central node (master) aggregates and adds the results of the
worker computations. Examples include distributed gradient
descent [4] and distributed kernel ridge regression [5].

Distributed computations on the cloud are commonly bottle-
necked by slow or unreliable nodes, called stragglers [6], whose
presence can delay the entire computation. While systems like
MapReduce [3] relied on simple solutions like task replication
to mitigate the effect of stragglers, a recent line of work [7],
[8], [9] has shown that adding redundancy using erasure codes
can provide much better resilience to stragglers. These works
rely on the fact that linear computations, such as the matrix-
vector product Ax, can be split into sub computations A1x
and A2x where A = [AT

1 AT
2 ]T and a redundant computation

(A1 + A2)x. Three worker nodes store matrices A1, A2 and
A1 + A2 respectively, and each multiplies its matrix with x.

Results from any two workers suffice to recover Ax, and thus
the system can tolerate one straggler.

The linearity of computations like matrix-vector multiplica-
tion enables the addition of redundancy using linear codes at no
extra cost. Thus, in the above example, once A1+A2 have been
pre-computed, the cost of computing A1x and (A1 + A2)x
is the same. On the other hand, most machine learning
computations such as gradients of neural network parameters
[2] or kernel functions between training and test points [10] are
non-linear, and the cost of computing coded functions can be
higher than that of computing uncoded functions thus undoing
some the benefits of adding redundancy. To see this consider a
computation of the form F (x) = f1(x) + f2(x) where F , f1
and f2 are non-linear functions. A naive approach to encoding
this computation across three nodes would be to have the nodes
compute f1(x), f2(x), and f1(x) + f2(x) respectively. In this
case the cost of computing f1(x) + f2(x) is twice that of
the other two computations since the non-linearity precludes
pre-computation of f1 + f2. This extra cost at the third node
can potentially negate the speedup expected from having to
wait for only two out of three nodes.

In this work we show that sparse rateless codes, specifically
LT codes [11] can mitigate the slowdown due to stragglers
when computing non-linear functions of the form F (x) =∑m

i=1 fi(x) in a distributed fashion without significantly
increasing the cost of computing coded symbols. This is
because the sparsity of the encoded symbols in LT codes
limits the cost of computing them while for dense codes
like Reed-Solomon codes, the cost of computing an encoded
symbol can be as large as that of the entire computation,
as we described above. Moreover LT codes also provide
significantly faster decoding complexity of O(m logm) unlike
the O(m3) decoding complexity of Reed-Solomon codes. The
fast encoding and decoding allows our scheme to scal to
really large values of m in emerging distributed settings like
serverless computing [12] which are known to suffer from
significant straggling [13]. Simulations, and experiments on
AWS Lambda[14], Amazon’s serverless computing framework,
show that LT codes offer significant speedup over uncoded
baselines for distributed computation of non-linear functions.

Related Work. While there is a long line of work on coded
computing [7], [8], [9] (incomplete list), most works have
been restricted to coding for linear computations. Among the
few works that have looked at non-linear computations, [15]
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Fig. 1: An illustration of our rateless coded (LT-1) strategy for a
system of 4 workers tasked with computing F (x) =

∑4
i−1 fi(x).

Tick marks indicate completed tasks which suffice to recover F (x).
Observe that Worker 2 (straggler) does not complete any tasks.

only considers polynomial functions, [16] only approximately
recovers the original computation without any convergence
guarantees, and [17] and follow-up works need knowledge of
the number of stragglers for code design which is unrealistic in
practice. On the other hand, we use rateless codes on general
non-linear functions that can be expanded as a sum of cheaper
non-linear functions. Our rateless coded approach can scale
to a large number of nodes, without any prior knowledge of
the number of stragglers, and provide efficient encoding and
decoding, and guaranteed recovery of the original computation.

II. PRELIMINARIES

A. Problem Setup

We consider the computation of an expensive non-linear
function that can be expressed as the sum of m cheap non-
linear functions as

F (x) =

m∑
i=1

fi(x) (1)

In machine learning, such computations include ensemble
models like Random Forests [18] where fi is the ith decision
tree in the ensemble, and kernel methods [10] where fi is the
kernel functions between the test point and the ith training point.
Outside machine learning such computations can arise in fields
like statistics [19] and non-linear optics [20] where expensive
non-linear functions are approximated by their Taylor series
wherein fi is the ith Taylor series term. We assume that fi’s
are inexpensive to compute as compared to F (x). Since m is
large, we wish to parallelize the computation to speed it up.

B. Baselines

We consider the following three baseline strategies for
computing (1), which we will compare with our approach:

1) All-at-One. In this approach, the entire computation is
performed at a single node. The node receives x as input,
computes fi(x), i = 1, . . . ,m and adds all the results to
compute F (x).

2) Uncoded. In this approach, the computation is paral-
lelized across m nodes (workers). Worker i is tasked
with computing fi(x). The process is coordinated by
a central node (master) which communicates x to the
workers, collects the results of worker computations, and
computes the sum in (1). In this case the master needs
to wait for all workers to complete their tasks.

3) r-Replication. In this approach, the computation is
again parallelized across m workers but this time tasks
are replicated across workers. The group of workers
r(j − 1) + 1, . . . , rj each compute the partial sum∑rj

i=r(j−1)+1 fi(x) for j = 1, . . . ,m/r. For eg. if r = 2,
workers 1 and 2 compute f1(x) + f2(x), workers 3 and
4 compute f3(x) + f4(x) etc.. For each partial sum, the
master only needs to wait for the fastest of the workers
that it was assigned to. F (x) can be computed once the
master has collected all distinct partial sums.

If m is large then one would expect Uncoded to outperform
All-at-One. However as we will see in our experiments in
Section V, the requirement of waiting for all nodes in Uncoded
can lead to significant slowdown in the presence of stragglers,
to the extent that it is even slower than the All-at-One approach
which only uses a single node. The r−Replication approach
can mitigate the effect of stragglers since it only needs to wait
for the fastest of the r workers for each partial sum. Systems
like Mapreduce [3] use r = 2 i.e. each computation is assigned
to 2 different worker nodes for added reliability. However as
we will see in Section V, this approach is still bottlenecked by
the slowest of the m/r groups computing distinct partial sums.
Hence, in Section III, we propose a rateless coded strategy for
computing (1) which can be designed such that we only need
to wait for the fastest m/r workers overall to compute F (x).

While we assume the number of workers to be equal to
m, the number of terms in the sum (1), this can easily be
generalized to consider p < m worker nodes by considering
each group of m/p terms in the sum to be a single function. We
study the case with m workers because straggling depends on
the tail of delay distribution at workers and hence is most severe
when the number of workers is large [6]. Moreover emerging
distributed computing frameworks like AWS Lambda [12], [14]
do consider the setting where each worker computes a single
function. Prior work [13] has shown the susceptibility of such
frameworks to straggling while computing linear functions,
and in Section V we show the presence of straggling, and the
speedup with our coded scheme, for non-linear functions.

C. Evaluation Criterion

We will use latency (defined below) as a metric to compare
the different schemes.

Definition 1 (Latency (T )). The latency T is the time taken
to complete the set of computations needed to recover F (x).

Observe that the set of computations needed to recover F (x)
varies across schemes, for example, all computations in the
Uncoded strategy versus at least one instance of each partial
sum in the r−Replication strategy.



III. PROPOSED CODING STRATEGY FOR DISTRIBUTED
NON-LINEAR COMPUTATIONS

We first introduce a general coded framework for speeding
up distributed non-linear computations of the form (1), and
then describe two rateless coded versions of the framework.

A. Coded Non-Linear Computing

Consider a me×m matrix Ge (me > m) such that any m×
m submatrix of Ge is invertible, for eg. if the elements of Ge

are Gaussian random variables. Now consider the computation
fe = Gef where f is a vector whose ith element is fi(x). If
each of the m workers computes me/m rows of the product
Gef , then we only need to wait for m rows to be completed
in total, across all workers. If G is the m × m submatrix
corresponding to the completed rows, and f ′ is the vector of
completed computations then we can recover f by solving
the system of equations f ′ = Gf . This is akin to the coded
computing approach of [7] for linear computations.

However observe that if Ge is a dense matrix, as is the
case with the MDS codes of [7], then each worker have to
compute fi(x) for a large subset of the indices i = 1, . . . ,m
and then multiply the vector f = [f1(x) . . . fm(x)]T with the
corresponding row of Ge. This would significantly increase
the worker load as compared to the Uncoded or r−Replication
approaches and thus may not offer much speedup. Also if Ge

is dense then the submatrix G will also be dense and solving
f ′ = Gf will be prohibitive (O(m3) complexity). Hence we
require sparse Ge, and efficient decoding of f from worker
computations, both of which are provided by rateless codes.

B. The first solution: LT-1

We now introduce our rateless coding strategy, illustrated in
Fig. 1, which uses LT codes [11] for straggler mitigation in
distributed computing of non-linear functions of the form (1).

Luby Transform (LT) codes proposed in [11] are a class of
erasure codes that can generate a limitless number of encoded
symbols from a finite set of source symbols. We apply LT
codes to (1) by treating each function fi(x) as a source symbol.
Each encoded symbol is the sum of d source symbols chosen
uniformly at random from the set of functions. Thus if Sd ⊆
{1, 2, . . .m} is the set of d row indices, the corresponding
encoded function is

f (e)(x) =
∑
i∈Sd

fi(x) (2)

The number of source symbols in each encoded symbol, or the
degree d, is sampled from the Robust Soliton degree distribution
[11], which ensures that encoded symbols are sparse linear
combinations of source symbols (O(logm) average degree).

A total of me(me > m) encoded symbols are assigned to the
m workers such that each worker is assigned me/m symbols
of the form (2) (we assume me/m is an integer). To compute
F (x), the master sends x to the workers which compute
encoded symbols. Since the degree d of each encoded symbol
is a random variable, the amount of computation assigned to
each worker may be different.

The master collects the encoded symbols until it has
enough to be able to recover F (x). One way to recover
F (x) =

∑m
i=1 fi(x) is to recover each fi(x), i = 1, . . . ,m

and then compute their sum. For this we use the the iterative
peeling decoder [11]. Since encoded symbols are random sums
of source symbols, the master may receive symbols such as
f1(x)+f2(x)+f3(x), f2(x)+f4(x), f3(x), f4(x), and so on.
Decoding is performed in an iterative fashion. In each iteration,
the decoder finds a degree one encoded symbol, covers the
corresponding source symbol, and subtracts it from all other
encoded symbols connected to that source symbol. Decoding
is possible once the master receives M ′ encoded symbols.

Since the encoding uses a random bipartite graph, the number
of symbols, M ′, required to decode the m source symbols
successfully is a random variable, which for the Robust Soliton
degree distribution is m+O(

√
m ln2(m/δ)) with probability

at least 1− δ [11]. Moreover, the complexity of the decoding
process described above isO(m logm) for LT codes (due to the
careful design of the Robust Soliton distribution). Thus, while
workers need to complete slightly more than m computations
the decoding cost is significantly less than MDS codes and
this combination of sparse degrees and fast decoding is the
key reason for choosing LT codes in our setting.

C. A general solution: LT-r

Observe that unlike prior coded computing works [7], [9] we
do not need to recover all the source symbols f1(x), . . . , fm(x).
Instead we just need to recover their sum F (x). A natural
question to ask in this case is whether we can reduce the
cost (encoding or decoding or both) given that recovering all
source symbols is a sufficient condition but not a necessary
condition for recovering the sum. To answer this, we propose
the following simple generalization of the LT-1 approach.

Consider splitting the expression for F in (1) into groups
analogous to r-replication as (for r = 2)

F (x) = (f1(x) + f2(x)) + . . .+ (fm−1(x) + fm(x)) (3)

Each term within parantheses corresponds to a group of fi’s
that in the case of r−replication are replicated at r nodes. In
the LT-r case, instead of replicating these functions we encode
them using an LT code over the groups. This will increase
the degree of the symbols by a factor of r because, if r = 2,
the encoded symbols obtained by adding the first two source
symbols will now be f1(x)+f2(x)+f3(x)+f4(x) and so on.
While a higher degree will lead to higher computation cost at
the workers, the master will have to wait for much fewer coded
symbols for successful decoding. As per the results in [11], the
master will now need M ′ = m/r+O(

√
m/r ln2(m/rδ)) for

successful decoding with probability at least 1− δ [11]. This
corresponds to (approximately) the fastest m/r computations
across all workers unlike r−Replication where we need to
wait for at least one worker from each of the m/r groups
computing distinct partial sums. Moreover the decoding cost
(O((m/r) log(m/r))) will be lower than LT-1. In experiments
in Section V we will see that LT-2 (r = 2) is indeed faster
than 2-replication and also (slightly) faster than LT-1.
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Fig. 2: The tail probability of the latency is the highest for the Uncoded scheme for both Exp(0.2) and Pareto(1,1) distributions on initial
delay Xi. Observe that One (All-at-One) where the entire computation is performed by a single node is faster than Uncoded in all cases, and
also has a lighter tail than 2-Replication in the simulations ((a) and (b)). Both LT coded schemes, LT-1 and LT-2, have the lightest latency tail
probability in the simulations and are the fastest in the AWS Lambda experiments. Both simulations and experiments use m = 1000.

IV. THEORETICAL LATENCY ANALYSIS

Our main theoretical results involve comparing the latency
of the proposed LT-coded strategies with the baseline strategies
in Section II-B. We assume that worker j performs Bj

computations in time Yj where

Yj = Xj + τBj , for all j = 1, . . . ,m (4)

where Xj is a random variable that includes the network latency,
initial setup time, and other random components, and τ is a
constant which represents the time taken by any worker to
perform a single computation of the form fi(x). Observe that
in the All-at-One, r−replication and LT-coded cases the worker
performs multiple such computations. When Xj ∼ exp(µ), the
time taken by worker j to perform b computations is distributed
as Pr(Yj ≤ t) = 1 − exp(−µ(t − τb)). While following
the shifted exponential delay model of [7], we believe this
formulation is more realistic since shift is parameterized by
the number of computations at workers and captures the fact
that delay is higher at workers performing more computations.

Theorem 1 (Latency of the LT-r strategy). For me → ∞,
and assuming that E[M ′] ≈ m/r is the expected number of
symbols needed for successful decoding, the expected latency
for the LT-coded case with m workers and Xi ∼ exp(µ) for
all workers i = 1, . . . ,m, is bounded as.

E[TLT] ≤ τ(r + 1)d̄m/r +
1

µ
, d̄m/r ∼ O(log(m/r)) (5)

where d̄m/r is the average degree of a LT code over m/r
source symbols.

Setting r = 1 in (5) corresponds to the LT-1 scheme.

Remark 1. The need for a sparse code is illustrated by the
average degree or d̄m/r term in (5). For a dense code like an
MDS code, d̄m/r would be O(m/r) which would significantly
increase the latency (while also increasing decoding complex-
ity). This is owing to the non-linearity of the problem due to
which the encoded functions cannot be pre-computed as in [7].

Proposition 1 (Latency of r-Replication). The expected latency
for the r−Replication strategy with Xi ∼ exp(µ) for all
workers i = 1, . . . ,m is

E[Trep] = τr +
1

rµ
Hm/r ' τr +

1

rµ
log

m

r
(6)

where Hj =
∑j

v=1 1/v, the jth Harmonic number.

Setting r = 1 in (6) corresponds to the Uncoded scheme.

Remark 2. Comparing (5) and (6) we can see that there is
a log(m/r) in both terms which can potentially be large (for
large m). However, in case of the replication scheme the term
is multiplied by a term proportional to 1/µ, the average initial
delay at the workers, while for the coded scheme the term is
multiplied by a term proportional to τ , the time taken by any
worker to perform a single computation of the form fi(x). We
typically expect the average initial delay to be much larger than
the time taken to perform a single computation, especially in
systems with straggling nodes (the factor of 1/r in (6) typically
will not affect this since r is usually chosen to be 2 or 3 [3]).
Hence we expect the latency of the LT-r strategy to be much
less than that of the r−Replication strategy.

Proposition 2 (Latency of All-at-One). The expected latency
for the All-at-One strategy with a single worker whose initial
delay is distributed as X1 ∼ exp(µ) is

E[TOne] = τm+
1

µ
(7)

Remark 3. In situations where 1/µ is large (Xi has a heavier
tail) it is possible for the latency of All-at-One to be lower
than that of Uncoded since the latter is adversely affected by
having to wait for the slowest worker. We show this below,
both through simulations and experiments on AWS Lambda, a
real distributed computing framework, thus clearly illustrating
the need for the coded schemes.



V. EVALUATION

We simulate the baseline and LT-coded schemes under our
delay model (4) for distributed non-linear computation with
m = 1000 and τ = 0.005. While we only included theoretical
results for exponentially distributed Xj , in simulations we use
both Exp(0.2) (Fig. 2a) and Pareto(1, 1) (Fig. 2b) distributions
for Xj to demonstrate the generality of our scheme. The tail
probabilities are calculated using 500 Monte-Carlo simulations.
The results clearly illustrate the superiority of the LT-1 and LT-
2 (r = 2) approaches over the baselines. Note that All-at-One
(One) outperforms Uncoded since both our choices of Xj have
a relatively heavy tail due to which the effect of the stragglers
is especially pronounced in the uncoded case.

We also evaluated our approach on AWS Lambda [14],
Amazon’s Serverless Computing framework. Serverless Com-
puting is especially appropriate for coded computing since
it targets users without cloud computing expertise who are
seeking a cheap and easy way to paraellelize and speed up
their computations [12] and typically have no control over
how tasks are allocated. There can be huge variability in the
underlying infrastructure leading to significant straggling [13].
We observed that the straggling follows the trend indicated by
(4) (random set-up time Xj , deterministic compute-time τ ). We
implement a distributed computation of the form (1) where fi’s
are Gaussian kernels between m = 1000 randomly chosen 1000
dimensional vectors and an input vector x. The computation
is implemented over m = 1000 Lambda workers. Since it is
unclear how to stop workers between computations, we let each
worker perform 2 computations in the LT-1 and LT-2 schemes
and then select the results from the fastest M ′/2 workers overall
where M ′ = 1400 and M ′ = 783 computations respectively
(corresponding to 99% probability of successful decoding in
each case). Results in Fig. 2c for Latency averaged over 20
trials show that LT-1 and LT-2 clearly outperforms baselines
in this real-world setting. Additionally, average decoding time
for LT-1 is around 55 ms while that of LT-2 is 29 ms thus
confirming that LT-2 can be decoded faster.

VI. CONCLUSION

The huge data and computation requirement of modern
machine learning has increased the reliance of machine learning
algorithms on parallel and distributed computing. It has been
amply demonstrated that naive distributed implementations are
severely bottlenecked by straggling nodes. Coded computing
offers a principled solution to this problem but has so far
been limited to linear computations. In this work we take a
step towards extending the benefits of coded computing to
non-linear computations which constitute the bulk of machine
learning computations. We demonstrate that rateless codes,
specifically LT codes, due to their sparsity and fast decoding,
can speed up distributed computations of expensive non-linear
functions, that can be written as sums of cheap non-linear
functions, in the presence of stragglers. In future work we
plan to explore novel code designs, extend the framework to
include other rateless codes [21], and apply our ideas to actual
serverless machine learning applications [12].
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